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Introduction

• Machine Learning is all about Data Analytics, complex 
Mathematical Models and Algorithms, used for 
Predictive Analytics.

• In this Assignment you will use more traditional and 
well known “Machine Learning” principles such as 
System Identification, State Estimation with Kalman 
Filter and Model Predictive Control (MPC)

• Previously you have been working with Neural 
Networks (not part of this assignment) which is also 
used in Machine Learning



Lab Assignment Overview

1. Modelling & System Identification

2. State Estimation with Kalman Filter

3. Feedback Control and Feedforward 
Control

4. Model Predictive Control (MPC)
– Compare with traditional PID

See next slides for details...
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LabVIEW Example (PID + Kalman + FF)

This is just a “bad” example – try to create a better application
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Learning Goals
• Learn more Programming (LabVIEW/MATLAB)
• Learn Practical Implementation of Control Theory, such 

as:
– System Identification
– State Estimation with Kalman Filter
– Feedback and Feedforward Control
– Model Predictive Control (MPC)

• Learn more about Modelling and Simulation of Dynamic 
Systems

• Learn practical Machine Learning (ML) Implementation



Machine Learning
• Machine Learning (ML) is all about Data Analytics, 

complex Mathematical Models and Algorithms used for 
Predictive Analytics.

• Machine Learning is closely related to (and often 
overlaps with) computational statistics, which also 
focuses on prediction-making through the use of 
computers. It has strong ties to mathematical 
optimization

• In System Identification, State Estimation (Kalman Filter) 
and Model Predictive Control (MPC) all these things 
apply



Machine Learning
• Machine Learning is about examine large amount of data (“Big Data”) 

looking for Patterns.
• It applies statistical techniques to large amounts of data, looking for 

the best pattern to solve your problem. This pattern can be referred 
to as a data model.

• The machine learning process starts with raw data and ends up with a 
model derived from that data.

• The machine learning algorithm is run on prepared data, and the 
result is referred to as a model.

• The knowledge gained is then used for Predictions, i.e., Predict the 
Future

• Machine Learning is an iterative process, which continuously updates 
the model when new data/knowledge arrives.
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Machine Learning Applications
• Create complex Weather models from a large amount of 

collected weather data. The weather models are then used 
to predict the weather in the future (short or long termed)

• Transportation: Self driving cars, ships or so-called 
Autonomous vehicles

• Marketing and sales, e.g., Online recommendation offers 
such as those from Amazon and Netflix

• Apple Siri (intelligent personal assistant) and similar services
• Financial services, such as Stock market, etc.
• ... hundreds of other examples



Software Software

LabVIEW has built-in features for System Identification and Estimation

LabVIEW Control Design and Simulation Module

MATLAB

If you prefer, you may use MATLAB for some of the Tasks



Hardware
Hardware

Level Tank

Your Personal Computer

USB-6008 or similar DAQ device

Online students: You can do 95% of the 
Assignment without this Hardware using 
Simulators and a provided “Black Box Model”

Only available in the Laboratory!



The Teacher don’t have all the answers (very few actually )!! Sometimes you just need to “Google” 
in order to solve your problems, Collaborate with other Students, etc. That’s how you Learn!

The teacher have not done 
all the Tasks in detail, so he 
may not have all the 
answers! That's how it is in 
real life also!

Very often it works on one computer but 
not on another. You may have other 
versions of the software, you may have 
installed it in the wrong order, etc...
In these cases Google is your best friend!



My System 
is not 

Working??

You probably will find the 
answer on the Internet

Check your electric circuit, electrical cables, DAQ device, etc. Check if 
the wires from/to the DAQ device is correct. Are you using the same 
I/O Channel in your Software as the wiring suggest? etc.

Troubleshooting & Debugging

Another person in the world probably 
had a similar problem

Use the Debugging Tools in your 
Programming IDE. 
Visual Studio, LabVIEW, etc. have great 
Debugging Tools! Use them!!

Visual Studio Use available Resources 
such as User Guides, 
Datasheets, Text Books, 
Tutorials, Examples, 
Tips & Tricks, etc.

“Google It”!



Theory
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Background Theory

• System Identification

• Kalman Filter

• Feedforward Control

• Discretization

• Skogestad PID Tuning

• Model Predictive Control (MPC)



• System Identification: System Identification uses 
statistical methods to build mathematical models of 
dynamical systems from measured data

• State Estimation: Use of mathematical models in 
order to estimate the internal states of a process

LabVIEW has built-in functionality for both System 
Identification and State Estimation

System Identification and Estimation
Theory



System Identification Categories
We have 2 main categories of System Identification:
• Parameter Estimation based on that we have developed a 

mathematical model using the laws of physics 
(Mechanistic Models) and you want to find the unknown 
model parameters. Here we will use least squares method 
as an example. The unknown parameters are then found 
from experimental data.

• Black-box / Subspace methods: System Identification 
based on that you do not have a mathematical model 
available. The models (Empirical Models) are found from 
experimental data only using advanced algorithms.

Theory



System 
Identification

Mechanistic 
Models

Empirical 
Models

Parameter 
Estimation

PLS/PCR,
Black-box,
DSR/Subspace,
Wavelet,
etc.

Physical Knowledge

Finding mathematical model(s) 
using the laws of physics/first 
principles

The unknown Parameters within the model(s) needs to be found

Trial and Error, Step Response, Least Square Methods, etc.

The model is found from 
experimental data

Datalogging from Real System 
(Experimental Data)

Datalogging from Real 
System
(Experimental Data)

Empirical modelling refers to any kind of (computer) modelling 
based on empirical observations rather than on mathematically 
describable relationships of the system modelled.

Example of unknown Parameters: Pump gain, Valve constants, etc.

Some of these can be found in data 
sheets, etc., while others is not so easy 
to find. Then Parameter Estimation is a 
good method to find these.

Theory



System Identification & Estimation in LabVIEW

• “LabVIEW Control Design and Simulation Module” has 
built-in features for Control, Simulation, System 
Identification and Estimation, which we shall use in this 
Assignment

• In addition we shall also create some 
features from scratch in order to get a deeper 
understanding of the theory behind 
(and for comparison)

Control & Simulation Palette in LabVIEW installed with 
LabVIEW Control Design and Simulation Module



Modelling and System 
Identification

Hans-Petter Halvorsen, M.Sc.



System Identification in LabVIEW

“LabVIEW Control Design and Simulation 
Module” has built-in features for System 
Identification



Level Tank

𝐴𝑡
𝑑ℎ

𝑑𝑡
= 𝐹𝑖𝑛 − 𝐹𝑜𝑢𝑡

𝐾𝑝

𝐹𝑖𝑛
𝑢

Where:
• 𝐹𝑖𝑛 - flow into the tank , 𝐹𝑖𝑛= 𝐾𝑝𝑢

• 𝐹𝑜𝑢𝑡 - flow out of the tank
• 𝐴𝑡 is the cross-sectional area of the tank

𝐴𝑡

ሶℎ =
1

𝐴𝑡
(𝐾𝑝𝑢 − 𝐹𝑜𝑢𝑡)

or:



LT

PID Controller – Reverse or Direct Mode?

LT

LIC

LIC

Direct Action ModeReverse Action Mode

Reverse action mode: If the controller must decrease the 
control signal to bring the increased process 
measurement back to the setpoint, the controller shall 
have Reverse Action Mode.

Direct action mode: If the controller must increase the control
signal to bring the increased process measurement back to 
the setpoint, the controller shall have Direct Action Mode.



𝐹𝑜𝑢𝑡

𝐴𝑡

ℎ



LM-900 Level System

We need to find the unknown model parameter(s) using System Identification methods

Can be manually adjusted

The level is 
measured

(𝐴𝑡 can be found by measuring the radius of the tank)

- For real system: a handle on the 
red tank
- For Simulator: A Numeric control 
on the Front Panel (HMI)

ሶℎ =
1

𝐴𝑡
𝐾𝑝(𝑢 − 𝑢0) − 𝐹𝑜𝑢𝑡

𝐴𝑡 ≈ 78.5 𝑐𝑚



Level Tank model – Integrator Model

ሶℎ =
1

𝐴𝑡
𝐾𝑝(𝑢 − 𝑢0) − 𝐹𝑜𝑢𝑡

• 𝐾𝑝 c𝑚3/s)/V is the pump gain

• 𝐹𝑜𝑢𝑡[c𝑚
3/s] is is the outflow through the valve

• 𝐴𝑡 𝑐𝑚2 is the cross-sectional area of the tank
• 𝑢 𝑉 is the control signal to the pump

#1

You should use this model in your 
linear Kalman filter algorithm



Level Tank model - 1.order linear system

ሶℎ =
1

𝐴𝑡
𝐾𝑝(𝑢 − 𝑢0) − 𝐾𝑣ℎ

where 𝐾𝑣 is the valve gain on the outflow.

A more accurate model may, e.g., be:

ሶℎ = −
𝐾𝑣
𝐴𝑡

ℎ +
𝐾𝑝
𝐴𝑡

𝑢 (The general term is ሶ𝑥 = 𝑎𝑥 + 𝑏𝑢)

It is more normal to put it like this:

The model above is a so-called Time-constant system (1.order linear system).

#2



Level Tank model - 1.order Nonlinear Model
The following model is even more accurate:

This is a so-called 1.order nonlinear model

#3

• ℎ [𝑐𝑚] is the level
• 𝑢 [𝑉] is the pump control signal to the pump
• 𝑢0 is the bias voltage needed to get any flow (with 𝑢

less than 𝑢0 there is no flow into the tank) 
• 𝐴𝑡[𝑐𝑚

2] is the cross-sectional area of the tank 
• 𝐾𝑝[(𝑐𝑚3/𝑠)/𝑉] is the pump gain

• 𝐾𝑣 is the valve constant. It depends on the opening of 
the valve, but if the opening is constant, 𝐾𝑣 is constant

• 𝜌 is the is the density of the liquid (water: 1 𝑘𝑔/𝑚3)
• 𝑔 is the is the gravity constant, 9.81 m/𝑠2

You may find 𝐾𝑝 and 𝐾𝑣 using, 

e.g., the Least Square method

ሶℎ =
1

𝐴𝑡
𝐾𝑝 𝑢 − 𝑢0 − 𝐾𝑣 𝜌𝑔ℎ



“Real Process” → “Black Box Model”
• The Real Level Tank is only available in the 

Laboratory
• A “Real” Level Tank will we provided as a “black 

box”. Actually, it is just a LabVIEW SubVI where the 
Block Diagram and the Process Parameters are 
hidden for you.

• Useful for Online Students and when you are 
working with the Assignment outside the 
Laboratory



“Real Process” → “Black Box Model”

Level 
Tank

𝑢 ℎ
Control Signal Level

You can assume that the following model is a 
good representation of the Black Box Model:

This means you need to unknown 
parameters using some kind of 
system identification method

(Provided by the Teacher)

ሶℎ =
1

𝐴𝑡
𝐾𝑝𝑢 − 𝐹𝑜𝑢𝑡



System Identification
In general, System Identification 
consists of the following steps:

Make sure to include all 
these steps in your solution.

Theory

[Figure: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010]



System Identification
Suggestions: Find the Model Parameters using:

• The Least Square Method

• Then adjust and fine-tune the Model Parameters using 
the “Trial and Error” method if necessary

• It is advised that you use at least 2 different methods 
for comparison.

• Other relevant methods may be: “Step response 
method”, Sub-space methods, DSR, built-in methods in 
LabVIEW/MATLAB, etc.

Theory



Data Logging
1. Exite the Real System, e.g.:

2. Log Data to File

3. Use the Logged Data to find the model or the model parameters

Theory

[Figure: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010]



Least Square Example
Given:

We  want to find the unknown a and b.
This gives:

i.e.,:

Then we need to discretize:

This gives:

Based on logged data we get:

The we find the uknows a and b using LS:

Theory



Trial & Error Method

Adjust model parameters and then compare the response from the 
real system with the simulated model. If they are “equal”, you have 
probably found a good model (at least in that working area) 

Theory

or “Black-box” Simulator

Created by you in LabVIEW



Model Validation

Make sure to validate that your model works as expected

Example of simple model validation:

Theory



Model Values
If you don't have the red Level Tank nearby, you may use the 
following values as a starting point for your simulations in the rest 
of the Assignment:

𝐴𝑡 = 78.5 𝑐𝑚

𝐾𝑝 = 16.5 𝑐𝑚3/𝑠

𝐹𝑜𝑢𝑡 should be adjustable from your Front Panel

The range for 𝐹𝑜𝑢𝑡 could, eg.,  be 0 ≤ 𝐹𝑜𝑢𝑡 ≤ 40𝑐𝑚3/𝑠



Congratulations!  - You are finished with the Task



State Estimation 
and Kalman Filter
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State Estimation in LabVIEW
“LabVIEW Control 
Design and Simulation 
Module” has built-in 
features for State 
Estimation, including 
different types of 
Kalman Filter algorithms



State Estimation with Kalman Filter

• The Kalman Filter is a commonly used method to estimate 
the values of state variables of a dynamic system that is 
excited by stochastic (random) disturbances and stochastic 
(random) measurement noise.

• We will estimate the process variable(s) using a Kalman 
Filter.

• You should use one of the built-in Kalman Filter algorithms 
in addition to create your own algorithm from scratch. 
Compare the results.



State-space Model
For the real system, only the level (h) is measured, so we want to 
use a Kalman Filter for estimating the outflow (𝐹𝑜𝑢𝑡) of the tank 
(Which we will use in a Feedforward control later). 

We need to find a state-space model that we can use in the Kalman Filter.
We need to extend our existing model of the water tank (shown above) with a new state for 
𝐹𝑜𝑢𝑡 - We can use the following approach:

Set 
𝑥1 = ℎ

And
𝑥2 = 𝐹𝑜𝑢𝑡

Then assume that 𝐹𝑜𝑢𝑡 is constant (which means that ሶ𝐹𝑜𝑢𝑡 = 0)
This mean we can set our system on the following general state-space form:

ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢

ሶℎ =
1

𝐴𝑡
𝐾𝑝𝑢 − 𝐹𝑜𝑢𝑡

𝑥 =
𝑥1
𝑥2

=
ℎ

𝐹𝑜𝑢𝑡



Discrete State-space Model

Next, find the discrete state-space model for the system as well (both pen and paper and 
LabVIEW):

Use the Euler forward method:

ሶ𝑥 ≈
𝑥𝑘+1 − 𝑥𝑘

𝑇𝑠

The discrete state-space model can then be used in a Kalman Filter algorithm.

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘
𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘

Tip! Pen and Paper: Use Euler forward 
on each of the differential equations. 
Then put these discrete equations on a 
discrete state-space form



How does the computer find the 
discrete State-space model?

Given a continuous State-space model:

ሶ𝑥 = 𝐴𝑐𝑥 + 𝐵𝑐𝑢
𝑦 = 𝐶𝑐𝑥 + 𝐷𝑐𝑢

When using a computer we can use the matrix formula:

𝑥𝑘+1 = 𝐼 + 𝑇𝑠𝐴𝑐
𝐴

𝑥𝑘 +ถ𝑇𝑠𝐵𝑐
𝐵

𝑢𝑘

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘

This equation is derived using the Euler forward method on a general state-space model.

We can easily implement this 
equation in LabVIEW/MATLAB 
or use built-in c2d functions



Kalman Filter

Start using a simulator (model). 
When the simulator is working, 
switch to the real process

Theory



Sketch of Kalman Filter in LabVIEW

49

Start using a simulator (model). When the 
simulator is working, switch to the real process



Kalman Filter in LabVIEW

50

Start using a simulator (model). When the simulator is working 
properly, switch to the real process. You may also add some noise to 
your model to make it more realistic.

Note! This is implemented inside a Loop!



LabVIEW Example (Kalman Filter)
This is just a “bad” example – try to create a better application



LabVIEW Example (Kalman Filter)
This is just a “bad” example – try to create a better application



Testing the Kalman Filter
• As with every model-based algorithm you should test your Kalman 

Filter with a simulated process before applying it to the real system. 

• You can implement a simulator in LabVIEW since you already have a 
model (the Kalman Filter is model-based). 

• In the testing, you can start with testing the Kalman Filter with the 
model in the simulator (without noise). 

• Then you can introduce some noise in your simulator. 

• You could also introduce some reasonable model errors by making 
the simulator model somewhat different from the Kalman Filter 
model, and check if the Kalman Filter still produces usable estimates.



Kalman Filter 
Algorithm

You may want to use this 
algorithm when you are 
creating your own Kalman 
Filter algorithm in LabVIEW

Theory



Congratulations!  - You are finished with the Task



Control System
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System Overview



PID Control
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PID Control

• Control the model (and the real process) using 
standard PI(D) control

• Create proper GUI

• It should be possible to easily switch between 
the model and the real process



LabVIEW Example (PID + Kalman)
This is just a “bad” example – try to create a better application



Congratulations!  - You are finished with the Task



Feedforward Control
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Feedforward Control

[Figure: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010]



Feedforward Control
• In this model is Fout a noise signal/disturbance that 

we want to remove by using Feedforward.

• We want to design the Feedforward controller so 
that Fout is eliminated.

– Solve for the control variable u, and substituting the 
process output variable h by its setpoint hsp. 

– Fout is not measured, so you need to use the estimated 
value instead. Assume that the setpoint is constant.

We will use Feedforward Control in order to improve the control, compared to ordinary Feedback Control.



Feedforward Control
• You should first test it on the simulator then on the real system 

afterwards. Start by using the simulator and then extend the program 
to make it easy to switch between the real process and the simulator.

• Does the feedforward control improve the level control (compare with 
not using feedforward control, but only feedback control)? 

• You should make it possible to turn the feedforward controller on/off 
from the Front Panel so it is easy to see the difference.

• Without feedforward control the control signal range of the PID 
controller is normally [0, 5]. With feedforward the output signal from 
the PID controller can be set to have the range [-5, +5], so the 
contribution upid from the PID controller can be negative. If upid
cannot be negative, the total signal u=upid+uf may not be small enough 
value to give proper control when the outflow is small. The signal to 
the DAQ device still needs to be limited to 0-5V as before.



Final Control System with Kalman Filter

• It should be possible to easily switch between 
the (1) model and the (2) real process in your 
GUI

• It should be possible to easily switch between 
(3) Feedback Control and Feedback + (4) 
Feedforward Control in your GUI



LabVIEW Example (PID + Kalman + FF)

This is just a bad example – try to create a better application



Congratulations!  - You are finished with the Task



Model Predictive Control
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Theory



Model Predictive Control (MPC)
• Model predictive control (MPC) is an advanced method of process 

control that has been in use in the process industries since the 1980s.
• Model Predictive Control (MPC) is a multivariable control algorithm.
• Model predictive controllers rely on dynamic models of the process, 

most often linear empirical models obtained by system identification. 
• MPC is based on iterative, finite-horizon optimization of a plant 

model.
• This is achieved by optimizing a finite time-horizon, but only 

implementing the current timeslot. MPC has the ability to anticipate 
future events and can take control actions accordingly.

https://en.wikipedia.org/wiki/Model_predictive_control

https://en.wikipedia.org/wiki/Model_predictive_control


Model Predictive Control (MPC)

[Wikipedia]



Model Predictive Control (MPC)

[Figure: National Instruments, LabVIEW Control Design user Manual, 2008. 
Available: http://www.ni.com/pdf/manuals/371057f.pdf]

http://www.ni.com/pdf/manuals/371057f.pdf


When constructing an MPC controller, you must provide 
the following information:

• Prediction horizon (𝑁𝑝)—The number of samples in the 
future during which the MPC controller predicts the 
plant output.

• Control horizon (𝑁𝑐) —The number of samples within 
the prediction horizon during which the MPC controller 
can affect the control action.

• Note!
𝑁𝑐< 𝑁𝑝



Model Predictive Control (MPC)

𝐽 = ෍

𝑘=0

𝑁𝑝

ො𝑦 − 𝑟 𝑇𝑄 ො𝑦 − 𝑟 +෍

𝑘=0

𝑁𝑐

∆𝑢𝑇𝑅 ∆𝑢

Where:
𝑁𝑝 – Prediction horizon, 𝑁𝑐 – Control horizon

𝑟 – Set-point
ො𝑦 – Predicted process output
∆𝑢 – Predicted change in control value, ∆𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1
𝑄 – Output error weight matrix
𝑅 – Control weight matrix

The cost function often used in MPC is like this (a linear quadratic function):

So the basic problem is to solve:

𝜕𝐽

𝜕𝑢
= 0

[National Instruments, LabVIEW Control Design user Manual, 2008. 
Available: http://www.ni.com/pdf/manuals/371057f.pdf]

http://www.ni.com/pdf/manuals/371057f.pdf


PID vs. MPC

• MPC is often used in addition to traditional control like PID 
– not as a replacement. 

• In large plants MPC is not a replacement for traditional PID, 
but used in addition to PID controllers. 

• PID controllers are used as single-loop controllers, while 
MPC is used as an overall system. 

• PID handles only a single input and a single output (SISO 
systems), while MPC is a more advanced method of process 
control used for MIMO systems (Multiple Inputs, multiple 
Outputs).



PID vs. MPC
Traditional Control (PID) MPC

• No knowledge about constraints
• Set-point far from constraints
• Not optimal process operation
• SISO systems
• A mathematical model is not needed

• Constraints included in the design
• Set-point can be closer to constraints
• Improved process operation
• MIMO systems
• A mathematical model is needed

Another advantage of MPC is that cross coupling in multiple input and multiple output (MIMO) systems are taken into consideration in an optimal way. MPC is a simple method for controlling MIMO systems.



MPC in LabVIEW

Hans-Petter Halvorsen

Model Predictive Control



MPC Implementation in LabVIEW

• Implement MPC for the Level Tank System in 
LabVIEW using the built-in MPC functionality 
in LabVIEW.

• If you prefer, you can instead use the MPC 
Toolbox in MATLAB combined with a “MATLAB 
Script Node in LabVIEW”



PID vs. MPC

Compare your Control Systems using PID and MPC 
respectively:
• Ease of Implementation
• Complexity
• Behavior
• Performance
• Advantages and Disadvantages
• ...



MPC in LabVIEW
In LabVIEW you have the following Predictive Control palette:



MPC Example in LabVIEW
This is just a “bad” example – try to create a better application



MPC - Tips and Tricks

• You can use the given examples as a starting 
point or build entirely from scratch.

• You must anyway have understanding, both in 
terms of implementation in LabVIEW and basic 
principles regarding basic MPC theory. 

• Play and Explore: It is important that you ”Add 
Value" to your code compared to the given 
examples.



Congratulations!  - You are finished with the Task



Congratulations!  - You are finished with all the Tasks in the Assignment!
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