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Introduction b 3
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* Machine Learning is all about Data Analytics, complex
Mathematical Models and Algorithms, used for
Predictive Analytics.

* |n this Assignment you will use more traditional and
well known “Machine Learning” principles such as
System ldentification, State Estimation with Kalman
Filter and Model Predictive Control (MPC)

* Previously you have been working with Neural
Networks (not part of this assignment) which is also
used in Machine Learning




Lab Assighment Overview

1. Modelling & System Identification
2. State Estimation with Kalman Filter

3. Feedback Control and Feedforward
Control

4. Model Predictive Control (MPC)
— Compare with traditional PID

See next slides for details...



System Overview

|dentification

v, y :
I
>| PID/MPC Real | Y —
System I
Controller AN :
\\ A I I
|
\\ e I :
L [E €0
IN _ ! |
| y : _|
I
System _____ :_; |V|Od€|| Lx I
I
! |
! J

Kalman Filter



LabVIEW Example (PID + Kalman + FF) ~o’
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Learning Goals

Learn more Programming (LabVIEW/MATLAB)

Learn Practical Implementation of Control Theory, such
as:

— System ldentification

— State Estimation with Kalman Filter

— Feedback and Feedforward Control

— Model Predictive Control (MPC)

Learn more about Modelling and Simulation of Dynamic
Systems

Learn practical Machine Learning (ML) Implementation



Machine Learning

 Machine Learning (ML) is all about Data Analytics,
complex Mathematical Models and Algorithms used for
Predictive Analytics.

 Machine Learning is closely related to (and often
overlaps with) computational statistics, which also
focuses on prediction-making through the use of
computers. It has strong ties to mathematical
optimization

* |n System Identification, State Estimation (Kalman Filter)
and Model Predictive Control (MPC) all these things

apply



Machine Learning

Machine Learning is about examine large amount of data (“Big Data”)
looking for Patterns.

It applies statistical techniques to large amounts of data, looking for
the best pattern to solve your problem. This pattern can be referred
to as a data model.

The machine learning process starts with raw data and ends up with a
model derived from that data.

The machine learning algorithm is run on prepared data, and the
result is referred to as a model.

The knowledge gained is then used for Predictions, i.e., Predict the
Future

Machine Learning is an iterative process, which continuously updates
the model when new data/knowledge arrives.



Machine Learning

A simplified sketch of the Machine Learning process:

The goal is to understand the structure of the
data and find patterns

Statistics Analysis Model Validation

)
Big Data Data
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Algorithms
Iterative




Machine Learning Applications

Create complex Weather models from a large amount of
collected weather data. The weather models are then used
to predict the weather in the future (short or long termed)

Transportation: Self driving cars, ships or so-called
Autonomous vehicles

Marketing and sales, e.g., Online recommendation offers
such as those from Amazon and Netflix

Apple Siri (intelligent personal assistant) and similar services
Financial services, such as Stock market, etc.
... hundreds of other examples



Software

SCRCRCRCECET

LabVIEW

LabVIEW Control Design and Simulation Module

‘\ MATLAB

If you prefer, you may use MATLAB for some of the Tasks

LabVIEW has built-in features for System Identification and Estimation



Hardware

LEVE' Ta n k Only available in the Laboratory!

¥ Online students: You can do 95% of the
—_— o . Assignment without this Hardware using
USB-6008 or similar DAQ device Simulators and a provided “Black Box Model”




Very often it works on one computer but
not on another. You may have other
versions of the software, you may have
installed it in the wrong order, etc...

In these cases Google is your best friend!

ED!

The teacher have not done
all the Tasks in detail, so he
may not have all the
answers! That's how it is in
real life also!

The Teacher don’t have all the answers (very few actually ®)!! Sometimes you just need to “Google”
in order to solve your problems, Collaborate with other Students, etc. That’s how you Learn!



Troubleshooting & Debuggin
mVisuaI Studio g gg g

Use available Resources
such as User Guides,
Datasheets, Text Books,
Tutorials, Examples,
Tips & Tricks, etc.

Use the Debugging Tools in your
Programming IDE.

Visual Studio, LabVIEW, etc. have great
Debugging Tools! Use them!!

2 LabVIEW

III

My System
is not
Working??

“Google It

You probably will find the R
answer on the Internet

8 Check your electric circuit, electrical cables, DAQ device, etc. Check if
Another person in the' world probably  the wires from/to the DAQ device is correct. Are you using the same

had a similar problem I/O Channel in your Software as the wiring suggest? etc.



Theory

Hans-Petter Halvorsen, M.Sc.



Background Theory

System ldentification

Kalman Filter

Feedforward Control
Discretization

Skogestad PID Tuning

Model Predictive Control (MPC)



Theory

System Identification and Estimation %~

* System ldentification: System Identification uses
statistical methods to build mathematical models of
dynamical systems from measured data

e State Estimation: Use of mathematical models in
order to estimate the internal states of a process

LabVIEW has built-in functionality for both System
|dentification and State Estimation



Theory

System Identification Categories ./

We have 2 main categories of System ldentification:

* Parameter Estimation based on that we have developed a
mathematical model using the laws of physics
(Mechanistic Models) and you want to find the unknown
model parameters. Here we will use least squares method
as an example. The unknown parameters are then found
from experimental data.

* Black-box / Subspace methods: System Identification
based on that you do not have a mathematical model
available. The models (Empirical Models) are found from
experimental data only using advanced algorithmes.



Theory System
\ i\ Datalogging from Real System

\g&g/ Identification _
Nerlmental Data)

Phvsical Knowledee Mechanistic Empirical P:‘S/kPCR'
Y g Models Models Black-box,

o . DSR/Subspace,
Flr?dlng mathematical .mod.el(s) The model is found from  Wavelet,
using the laws of physics/first experimental data otc.
principles

] v Empirical modelling refers to any kind of (computer) modelling
Datalogglng from Real Parameter } based on empirical observations rather than on mathematically
System . . describable relationships of the system modelled.
Estimation

(Experimental Data)

The unknown Parameters within the mOdel(S) needs to be found Some of these can be found in data

. sheets, etc., while others is not so easy
Example of unknown Parameters: Pump gain, Valve constants, etc.  tofind. Then Parameter Estimation is a
good method to find these.

Trial and Error, Step Response, Least Square Methods, etc.



System Identification & Estimation in LabVIEW

 “LabVIEW Control Design and Simulation Module” has
built-in features for Control, Simulation, System
|dentification and Estimation, which we shall use in this
Assignment

* In addition we shall also create some
features from scratch in order to get a deeper

Control & Simulation

understanding of the theory behind =~ =2

(and for comparison) e
wET Fuzzy _
Control & Simulation Palette in LabVIEW installed with = E

GIs)
LabVIEW Control Design and Simulation Module Simulstion  Control Desi... System Ident...



e

Modelling and System
ldentification

Hans-Petter Halvorsen, M.Sc.



System Identification in LabVIEW

“LabVIEW Control Design and Simulation
Module” has built-in features for System

| d e nt ifi Cat | O n System Identification
| aln l QSearch | €k, Customize™ |

Control & Simulation
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Management Utilities Slte COT



Level Tank

dh
AtazFi — Fout

or:

: 1
h = A_(Kpu — Fout)
t

Where:

Fin - flow into the tank, Fi,,= K,u
 F,,: - flow out of the tank
* A, is the cross-sectional area of the tank




PID Controller — Reverse or Direct Mode?

Reverse Action Mode Direct Action Mode

)
S S
—U

T =L

Reverse action mode: If the controller must decrease the
control signal to bring the increased process
measurement back to the setpoint, the controller shall
have Reverse Action Mode.

Direct action mode: If the controller must increase the control
signal to bring the increased process measurement back to
the setpoint, the controller shall have Direct Action Mode.
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Can be manually adjusted

- For real system: a handle on the
red tank

- For Simulator: A Numeric control
on the Front Panel (HMI)

. 1
h = A_[Kp(u — Ug) — Fout]
t

/

We need to find the unknown model parameter(s) using System Identification methods

The level is
measured

(A; can be found by measuring the radius of the tank) At ~ 78.5 cm



#1
Level Tank model — Integrator Model

. 1
h = A_[Kp(u — uO) — Fout]
t

* K, [cm3/s)/V] is the pump gain

e F,,.[cm3/s]isis the outflow through the valve
« A, [cm?] is the cross-sectional area of the tank
* u [V]is the control signal to the pump

You should use this model in your
linear Kalman filter algorithm




#2
Level Tank model - 1.order linear system

A more accurate model may, e.g., be:
: 1
h=— |K, (w — up) — Kyh|
t

where K, is the valve gain on the outflow.

It is more normal to put it like this:

h=——h+-"u (The general term is X = ax + bu)

The model above is a so-called Time-constant system (1.order linear system).



#3
Level Tank model - 1.order Nonlinear Model

The following model is even more accurate:

. 1
h = A_t [Kp(u —Ug) — Ky pgh]

This is a so-called 1.order nonlinear model

h [cm] is the level

u [V] is the pump control signal to the pump

Uy is the bias voltage needed to get any flow (with u
less than u; there is no flow into the tank)

A[cm?] is the cross-sectional area of the tank
K,[(cm3/s)/V]is the pump gain

K, is the valve constant. It depends on the opening of e.g., the Least Square method
the valve, but if the opening is constant, K, is constant

p is the is the density of the liquid (water: 1 kg/m?)

g is the is the gravity constant, 9.81 m/s?

You may find K, and K, using,



“Real Process” - “Black Box Model”

 The Real Level Tank is only available in the

Laboratory

A “Real” Level Tank will we provided as a “black
box”. Actually, it is just a LabVIEW SubVI where the

Block Diagram and the Process Parameters are
hidden for you.

Useful for Online Students and when you are
working with the Assighnment outside the
Laboratory



“Real Process” = “Black Box Model”

a I
Level

u —r —»h

Tank

Control Signal Level

\_ )

(Provided by the Teacher)

You can assume that the following model is a

good representation of the Black Box Model:
This means you need to unknown

|
h = T [Kpu — Fout] parameters using some kind of
t system identification method



System ldentification

1. Excite the real system, and log input and output:

| n ge n e ra I, SySte m I d e nt|f|cat|0 n Input sequence. r;mm;r’ff_)_ Real Measured response. v, (k)
consists of the following steps: system
= Logging

2. Split data, for estimation and for validation :

Urorail 1) Splitdata | e 2l ml()
— .
(e.g. INtO | —— = Vesrim(k)

1 —r 7 L e Hyapa(k)
Make sure to include all e TS
these steps in your solution. 3. Estimate model:
U osiim (‘7")
- ™ System Model. M
. - . . . -
Vestim( i) identification

4. Check (validate) model using e.g. simulation:

”1'0{@" Real 3 'L‘ai'i'd()(—)

system

Model Vsim ()
M
(Simulation ) /

If quite similar . the model is

[Figure: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010] brobably good.



System ldentification Theory

\Q
Suggestions: Find the Model Parameters using:
* The Least Square Method Ors = (PTP) 'Y

 Then adjust and fine-tune the Model Parameters using
the “Trial and Error” method if necessary

* |tis advised that you use at least 2 different methods
for comparison.

e Other relevant methods may be: “Step response

method”, Sub-space methods, DSR, built-in methods in
LabVIEW/MATLAB, etc.



1. Exite the Real System, e.g.
A

y

u

Data Logging Q‘@)

2. Log Data to File

Input sequence, u,,,,(k)

Real
system

Logging

| Measured response, v, ..(k)

[Figure: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010]

3. Use the Logged Data to find the model or the model parameters



Theory

Least Square Example W

Given:

This gives:
x = ax + bu _
Xre+1 — Xk a
. = [Xr Ug] [ ]
We want to find the unknown a and b. . T — b
This gives: y

x =[x u]l}]

|

|

|

|

|

|

|

: Based on logged data we get:

| i : T

[ :
i.e.,: I Xrk—1 — Xk—2

|

|

|

|

|

|

|

|

|

|

Y @© '
L TS E a
9 — [b] Xpe — Xg—1 | = | Xr—2 Uk-—2 [b]
T, Xk—1 Uk—1|'y’
Xr+1 — Xk . S
Then we need to discretize: T, ¢

Xk+1 — Xk
TS

The we find the uknows a and b using LS:

O, = (PTD) 1Ty

X =



Vi

Trial & Error Method Q@)

Created by you in LabVIEW

u BT

Compare
Process
or “Black-box” Simulator =

Adjust model parameters and then compare the response from the
real system with the simulated model. If they are “equal”, you have
probably found a good model (at least in that working area)




-
Model Validation Qg}
Make sure to validate that your model works as expected

Example of simple model validation:

Compare
: Real Y : | —
Process
>



. 1
h = A | Kpu—Fpue]

Model Values

If you don't have the red Level Tank nearby, you may use the
following values as a starting point for your simulations in the rest
of the Assignment:

A =785 cm
K, = 16.5 cm?/s

F,,: should be adjustable from your Front Panel
The range for F,y: could, eg., be 0 < F,,; <40cm?/s



finished with the Task

- You are
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State Estimation
and Kalman Filter

Hans-Petter Halvorsen, M.Sc.



State Estimation in LabVIEW

“LabVIEW Control
Design and Simulation
Module” has built-in
features for State
Estimation, including
different types of
Kalman Filter algorithms
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State Estimation with Kalman Filter

 The Kalman Filter is a commonly used method to estimate
the values of state variables of a dynamic system that is

excited by stochastic (random) disturbances and stochastic
(random) measurement noise.

* We will estimate the process variable(s) using a Kalman
Filter.

* You should use one of the built-in Kalman Filter algorithms

in addition to create your own algorithm from scratch.
Compare the results.



State-space Model

For the real system, only the level (h) is measured, so we want to
— [Kpu — Fout] use a Kalman Filter for estimating the outflow (F,,;) of the tank
(Which we will use in a Feedforward control later).

We need to find a state-space model that we can use in the Kalman Filter.
We need to extend our existing model of the water tank (shown above) with a new state for
F,,+ - We can use the following approach:
v=[al=[n.
Fout

Set
x1=nh
And
X2 = Fout .

Then assume that F,,; is constant (which means that F,,,; = 0)
This mean we can set our system on the following general state-space form:

X = Ax + Bu

y =Cx+ Du



Discrete State-space Model

Next, find the discrete state-space model for the system as well (both pen and paper and
LabVIEW):

xk+ 1 — Axk _I_ Buk Tip! Pen and Paper: Use Euler forward

on each of the differential equations.
Then put these discrete equations on a

yk = ka + D uk discrete state-space form

Use the Euler forward method:
. Xk+1 T Xk
Ts

The discrete state-space model can then be used in a Kalman Filter algorithm.



How does the computer find the
discrete State-space model?

Given a continuous State-space model:

X =A.x + B.u
y=Cx+D.u

When using a computer we can use the matrix formula:

Xk+1 = (I + TsAc) Xy + TsB. uy

A B
_ We can easily implement this
Vi = Cxp + Duy, equation in LabVIEW/MATLAB

or use built-in c2d functions

This equation is derived using the Euler forward method on a general state-space model.
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Sketch of Kalman Filter in LabVIEW

Start using a simulator (model). When the
simulator is working, switch to the real process

While Loop

S~
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\ Timer
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Filter
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Plot

Y

Ks

Plot

~

Exit




Kalman Filter in LabVIEW &

/o)
S
Start using a simulator (model). When the simulator is working
properly, switch to the real process. You may also add some noise to
your model to make it more realistic.
_l El k_hart_x1
El Ti-'k g |:<1 real E
L4 O--+ o SO
H @' %dex Array | e
EE T E E_.‘..: o =1 _est|
_hart x2
|
S ke
Ewild P.rraEl
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]
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" e
A
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Note! This is implemented inside a Loop!



LabVIEW Example (Kalman Filter) .o)

E Kalman Filter on Water Tank using While Loop.vi Front Panel

File Edit View Project Operate Tools Window Help
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£ Kalman Filter on Water Tank using While Loop.vi Block Diagram

LabVIEW Example (Kalman Filter)

File Edit View Project Operate Tools Window Help
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Testing the Kalman Filter

As with every model-based algorithm you should test your Kalman
Filter with a simulated process before applying it to the real system.

You can implement a simulator in LabVIEW since you already have a
model (the Kalman Filter is model-based).

In the testing, you can start with testing the Kalman Filter with the
model in the simulator (without noise).

Then you can introduce some noise in your simulator.

You could also introduce some reasonable model errors by making
the simulator model somewhat different from the Kalman Filter
model, and check if the Kalman Filter still produces usable estimates.



Kalman Filter
Algorithm

You may want to use this
algorithm when you are
creating your own Kalman
Filter algorithm in LabVIEW

Step 1-4 goes inside a loop in your program.

Note! Different notation is used in different literature:

Apriori (or Predicted) state estimate: X or x,

Aposteriori (or Corrected) state estimate: X or x,

Pre Step: Find the steady state Kalman Gain K

K is time-varying, but you normally implement the steady state version of Kalman Gain
K. Use the “CD Kalman Gain.vi” in LabVIEW or one of the functions kalman, kalman_d or
lge in MathScript.

Init Step: Set the initial Apriori (Predicted) state estimate
£ = Xxo

Step 1: Find Measurement model update

Vi = g( Xk uy)
For Linear State-space model:

¥ = CXp + Duy,
Step Z: Find the Estimator Error
€ = ¥ — Vi

Step 3: Find the Aposteriori [Corrected) state estimate

X, = X + Key.

Where K is the Kalman Filter Gain. Use the steady state Kalman Gain or calculate the
time-varying Kalman Gain.

Step 4: Find the Apriori (Predicted) state estimate update
K1 = F(Hpa )
For Linear State-space model:

X1 = Ajfr( =+ Buﬁ-



finished with the Task

- You are
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PID Control
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PID Control

* Control the model (and the real process) using
standard PI(D) control

* Create proper GUI

* [t should be possible to easily switch between
the model and the real process



LabVIEW Example (PID + Kalman) .o)
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Feedforward Control

State estimator
(Observer or |[-—
Kalman Filter)

Feedforward

Disturbance
Uy d
i u » Process Y
Y
Sensor
Feedback

[Figure: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010]




Feedforward Control

* |n this model is Fout a noise signal/disturbance that
we want to remove by using Feedforward.

* We want to design the Feedforward controller so

that Fout is eliminated.

— Solve for the control variable u, and substituting the
process output variable h by its setpoint hsp.

— Fout is not measured, so you need to use the estimated
value instead. Assume that the setpoint is constant.

We will use Feedforward Control in order to improve the control, compared to ordinary Feedback Control.



Feedforward Control

You should first test it on the simulator then on the real system ~y
afterwards. Start by using the simulator and then extend the program
to make it easy to switch between the real process and the simulator.

Does the feedforward control improve the level control (compare with
not using feedforward control, but only feedback control)?

You should make it possible to turn the feedforward controller on/off
from the Front Panel so it is easy to see the difference.

Without feedforward control the control signal range of the PID
controller is normally [0, 5]. With feedforward the output signal from
the PID controller can be set to have the range [-5, +5], so the
contribution upid from the PID controller can be negative. If upid
cannot be negative, the total signal u=upid+uf may not be small enough
value to give proper control when the outflow is small. The signal to
the DAQ device still needs to be limited to 0-5V as before.




Final Control System with Kalman Filter

* |t should be possible to easily switch between
the (1) model and the (2) real process in your
GUI

* |t should be possible to easily switch between
(3) Feedback Control and Feedback + (4)
Feedforward Control in your GUI



LabVIEW Example (PID + Kalman + FF) ~o’

) Feedforward Control.vi
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Model Predictive Control (MPC)

Model predictive control (MPC) is an advanced method of process
control that has been in use in the process industries since the 1980s.

Model Predictive Control (MPC) is a multivariable control algorithm.

Model predictive controllers rely on dynamic models of the process,
most often linear empirical models obtained by system identification.

MPC is based on iterative, finite-horizon optimization of a plant
model.

This is achieved by optimizing a finite time-horizon, but only
implementing the current timeslot. MPC has the ability to anticipate
future events and can take control actions accordingly.

https://en.wikipedia.org/wiki/Model predictive control



https://en.wikipedia.org/wiki/Model_predictive_control

Model Predictive Control (MPC)

Reference Trajectory

Past inputs
and outputs g, _ N
Model Predicted output .
_h..
Future inputs L Future errors
Optimizer B

[Wikipedia]

Cost function Constraint



Model Predictive Control (MPC)

Output Setpoint

Predicted Output
Past Output

Meaw
Control Action

Past Control ]
Action ﬁ
— | | >
— k k+Ng k+N, Time

. Control Horizon |
I I
, Prediction Horizon ,
I

[Figure: National Instruments, LabVIEW Control Design user Manual, 2008.
Available: http://www.ni.com/pdf/manuals/371057f.pdf]



http://www.ni.com/pdf/manuals/371057f.pdf

When constructing an MPC controller, you must provide
the following information:

* Prediction horizon (N,,)—The number of samples in the
future during which the MPC controller predicts the
plant output.

* Control horizon (N.) —The number of samples within
the prediction horizon during which the MPC controller
can affect the control action.

* Note!
N .< Np



Model Predictive Control (MPC)

The cost function often used in MPC is like this (a linear quadratic function):

Np N¢
J=)>@@-1NT0@—-r)+ ) AMTRAu

Where:

N, — Prediction horizon, N, — Control horizon So the basic problem is to solve:
r — Set-point

y — Predicted process output 0_] =0

Au — Predicted change in control value, Au, = u, — Up_q du

(Q — Output error weight matrix

R — Control WEIght matrix [National Instruments, LabVIEW Control Design user Manual, 2008.

Available: http://www.ni.com/pdf/manuals/371057f.pdf]



http://www.ni.com/pdf/manuals/371057f.pdf

PID vs. MPC

MPC is often used in addition to traditional control like PID
— not as a replacement.

In large plants MPC is not a replacement for traditional PID,
but used in addition to PID controllers.

PID controllers are used as single-loop controllers, while
MPC is used as an overall system.

PID handles only a single input and a single output (SISO
systems), while MPC is a more advanced method of process
control used for MIMO systems (Multiple Inputs, multiple
Outputs).



PID vs. MPC

Traditional Control (PID) MPC

constraint A constraint

output

et point et point
time time
* No knowledge about constraints e Constraints included in the design
» Set-point far from constraints * Set-point can be closer to constraints
* Not optimal process operation * Improved process operation
* SISO systems * MIMO systems
A mathematical model is not needed A mathematical model is needed

Another advantage of MPC is that cross coupling in multiple input and multiple output (MIMO) systems are taken into consideration in an optimal way. MPC is a simple method for controlling MIMO systems.
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MPC Implementation in LabVIEW

* Implement MPC for the Level Tank System in
LabVIEW using the built-in MPC functionality
in LabVIEW.

* |f you prefer, you can instead use the MPC
Toolbox in MATLAB combined with a “MATLAB
Script Node in LabVIEW”



PID vs. MPC

Compare your Control Systems using PID and MPC
respectively:

* Ease of Implementation
 Complexity

* Behavior

* Performance

* Advantages and Disadvantages



MPC in LabVIEW

In LabVIEW you have the following Predictive Control palette:
x|

ﬁ} I C%Searchl o Wiew ™ l

T T+ T+
e B ., ?
= L= L=
CD Create M... CDImplemen... CD Set MPC ..,
- = T+ = o
s = o »
Palette Object Description
D Create M.,, D Read MPC... <D 'Write MP..|co creste Mec Creates a model predictive control (MPC) centroller for a state-space medel. You must manually select the polvmorphic instance to use.
= = Controller
[ YT CD Create MPC FIFQ | Creates a queus or real-time (RT) FIFC for an MPC controller. You use this queue or RT FIFC to update setpoint and/or disturbance
e e profiles dynamically.
CD Delete MPC FIFO |Deletes the MPC FIFO. After you delete this FIFQ, the C0O Write MPC FIFQ VI stops writing data to the FIFO and the loop that contains
D Step Forw,.. CD Update M... this VI terminates. =
CD Implement MPC  |Calculates the Control Action u(k) to apply te the plant. This vI uses the Qutput Reference Window, Disturbance Window, and
Controller Control Action Reference Window parameters to calculate the control action along the contral horizon at time k.

CD Read MPC FIFQ |Reads a portion, or window, of profile values from the MPC FIFO.

CD Set MPC Updates zpecified parameters of a model predictive contral (MPC) controller for a state-space model. You must manually select the
Controller polymorphic instance to use.

o

CD Step Forward Calculates the appropriate portion, or window, of the setpoint and/or disturbance profiles. You wire these windows to the appropriate
indow input{s) of the CO Implement MPC Controller VI.

Calculates the appropriate portion, or window, of the setpoint or disturbance profile of a signal from time & to time & + Prediction
Horizon. You wire theze windows to the appropriate input(s) of the CO Implement MPC Controller VI,

CD Write MPC FIFQ |Writes a contral action setpoint, cutput =etpoint, or disturbance profile window to the MPC FIFO. You then use the CO Read MPC FIFO VI
to read values from this MPC FIFO.




MPC Example in LabVIEW
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MPC - Tips and Tricks

* You can use the given examples as a starting
point or build entirely from scratch.

* You must anyway have understanding, both in
terms of implementation in LabVIEW and basic
principles regarding basic MPC theory.

* Play and Explore: It is important that you "Add
Value" to your code compared to the given
examples.
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Congratulations! - You are finished with all the Tasks in the Assignment!
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