
Hans-Petter Halvorsen

Machine Learning in
Automation Systems

https://www.halvorsen.blog

https://www.halvorsen.blog/

Table of Contents
1. Introduction

– What is Machine Learning?

2. Modelling and System Identification
3. State Estimation and Kalman Filter
4. Create Control System

– Implement PID Control
– Implement Feedforward Control

5. MPC
– MPC in LabVIEW

Introduction

• Machine Learning is all about Data Analytics, complex
Mathematical Models and Algorithms, used for
Predictive Analytics.

• In this Assignment you will use more traditional and
well known “Machine Learning” principles such as
System Identification, State Estimation with Kalman
Filter and Model Predictive Control (MPC)

• Previously you have been working with Neural
Networks (not part of this assignment) which is also
used in Machine Learning

Lab Assignment Overview

1. Modelling & System Identification

2. State Estimation with Kalman Filter

3. Feedback Control and Feedforward
Control

4. Model Predictive Control (MPC)
– Compare with traditional PID

See next slides for details...

System Overview

Real
System

Modell

𝑒𝐾

𝑦

ത𝑦

𝑢

Kalman Filter

ҧ𝑥

𝑦
PID/MPC

System
Identification

𝑟

Controller

LabVIEW Example (PID + Kalman + FF)

This is just a “bad” example – try to create a better application

Keywords
• Introduction to Machine Learning
• Modelling and Control Theory
• Simulation
• System Identification
• State Estimation using Kalman Filter
• Feedback Control (PID)
• Feedforward Control
• Model Predictive Control (MPC)
• Programming/LabVIEW

Learning Goals
• Learn more Programming (LabVIEW/MATLAB)
• Learn Practical Implementation of Control Theory, such

as:
– System Identification
– State Estimation with Kalman Filter
– Feedback and Feedforward Control
– Model Predictive Control (MPC)

• Learn more about Modelling and Simulation of Dynamic
Systems

• Learn practical Machine Learning (ML) Implementation

Machine Learning
• Machine Learning (ML) is all about Data Analytics,

complex Mathematical Models and Algorithms used for
Predictive Analytics.

• Machine Learning is closely related to (and often
overlaps with) computational statistics, which also
focuses on prediction-making through the use of
computers. It has strong ties to mathematical
optimization

• In System Identification, State Estimation (Kalman Filter)
and Model Predictive Control (MPC) all these things
apply

Machine Learning
• Machine Learning is about examine large amount of data (“Big Data”)

looking for Patterns.
• It applies statistical techniques to large amounts of data, looking for

the best pattern to solve your problem. This pattern can be referred
to as a data model.

• The machine learning process starts with raw data and ends up with a
model derived from that data.

• The machine learning algorithm is run on prepared data, and the
result is referred to as a model.

• The knowledge gained is then used for Predictions, i.e., Predict the
Future

• Machine Learning is an iterative process, which continuously updates
the model when new data/knowledge arrives.

Cloud

Machine Learning

Data
Data

Preparations
Model

Statistics Analysis

A simplified sketch of the Machine Learning process:

The goal is to understand the structure of the
data and find patterns

Iterative

Model Validation

Big Data

Algorithms

Machine Learning Applications
• Create complex Weather models from a large amount of

collected weather data. The weather models are then used
to predict the weather in the future (short or long termed)

• Transportation: Self driving cars, ships or so-called
Autonomous vehicles

• Marketing and sales, e.g., Online recommendation offers
such as those from Amazon and Netflix

• Apple Siri (intelligent personal assistant) and similar services
• Financial services, such as Stock market, etc.
• ... hundreds of other examples

Software Software

LabVIEW has built-in features for System Identification and Estimation

LabVIEW Control Design and Simulation Module

MATLAB

If you prefer, you may use MATLAB for some of the Tasks

Hardware
Hardware

Level Tank

Your Personal Computer

USB-6008 or similar DAQ device

Online students: You can do 95% of the
Assignment without this Hardware using
Simulators and a provided “Black Box Model”

Only available in the Laboratory!

The Teacher don’t have all the answers (very few actually )!! Sometimes you just need to “Google”
in order to solve your problems, Collaborate with other Students, etc. That’s how you Learn!

The teacher have not done
all the Tasks in detail, so he
may not have all the
answers! That's how it is in
real life also!

Very often it works on one computer but
not on another. You may have other
versions of the software, you may have
installed it in the wrong order, etc...
In these cases Google is your best friend!

My System
is not

Working??

You probably will find the
answer on the Internet

Check your electric circuit, electrical cables, DAQ device, etc. Check if
the wires from/to the DAQ device is correct. Are you using the same
I/O Channel in your Software as the wiring suggest? etc.

Troubleshooting & Debugging

Another person in the world probably
had a similar problem

Use the Debugging Tools in your
Programming IDE.
Visual Studio, LabVIEW, etc. have great
Debugging Tools! Use them!!

Visual Studio Use available Resources
such as User Guides,
Datasheets, Text Books,
Tutorials, Examples,
Tips & Tricks, etc.

“Google It”!

Theory

Hans-Petter Halvorsen, M.Sc.

Background Theory

• System Identification

• Kalman Filter

• Feedforward Control

• Discretization

• Skogestad PID Tuning

• Model Predictive Control (MPC)

• System Identification: System Identification uses
statistical methods to build mathematical models of
dynamical systems from measured data

• State Estimation: Use of mathematical models in
order to estimate the internal states of a process

LabVIEW has built-in functionality for both System
Identification and State Estimation

System Identification and Estimation
Theory

System Identification Categories
We have 2 main categories of System Identification:
• Parameter Estimation based on that we have developed a

mathematical model using the laws of physics
(Mechanistic Models) and you want to find the unknown
model parameters. Here we will use least squares method
as an example. The unknown parameters are then found
from experimental data.

• Black-box / Subspace methods: System Identification
based on that you do not have a mathematical model
available. The models (Empirical Models) are found from
experimental data only using advanced algorithms.

Theory

System
Identification

Mechanistic
Models

Empirical
Models

Parameter
Estimation

PLS/PCR,
Black-box,
DSR/Subspace,
Wavelet,
etc.

Physical Knowledge

Finding mathematical model(s)
using the laws of physics/first
principles

The unknown Parameters within the model(s) needs to be found

Trial and Error, Step Response, Least Square Methods, etc.

The model is found from
experimental data

Datalogging from Real System
(Experimental Data)

Datalogging from Real
System
(Experimental Data)

Empirical modelling refers to any kind of (computer) modelling
based on empirical observations rather than on mathematically
describable relationships of the system modelled.

Example of unknown Parameters: Pump gain, Valve constants, etc.

Some of these can be found in data
sheets, etc., while others is not so easy
to find. Then Parameter Estimation is a
good method to find these.

Theory

System Identification & Estimation in LabVIEW

• “LabVIEW Control Design and Simulation Module” has
built-in features for Control, Simulation, System
Identification and Estimation, which we shall use in this
Assignment

• In addition we shall also create some
features from scratch in order to get a deeper
understanding of the theory behind
(and for comparison)

Control & Simulation Palette in LabVIEW installed with
LabVIEW Control Design and Simulation Module

Modelling and System
Identification

Hans-Petter Halvorsen, M.Sc.

System Identification in LabVIEW

“LabVIEW Control Design and Simulation
Module” has built-in features for System
Identification

Level Tank

𝐴𝑡
𝑑ℎ

𝑑𝑡
= 𝐹𝑖𝑛 − 𝐹𝑜𝑢𝑡

𝐾𝑝

𝐹𝑖𝑛
𝑢

Where:
• 𝐹𝑖𝑛 - flow into the tank , 𝐹𝑖𝑛= 𝐾𝑝𝑢

• 𝐹𝑜𝑢𝑡 - flow out of the tank
• 𝐴𝑡 is the cross-sectional area of the tank

𝐴𝑡

ሶℎ =
1

𝐴𝑡
(𝐾𝑝𝑢 − 𝐹𝑜𝑢𝑡)

or:

LT

PID Controller – Reverse or Direct Mode?

LT

LIC

LIC

Direct Action ModeReverse Action Mode

Reverse action mode: If the controller must decrease the
control signal to bring the increased process
measurement back to the setpoint, the controller shall
have Reverse Action Mode.

Direct action mode: If the controller must increase the control
signal to bring the increased process measurement back to
the setpoint, the controller shall have Direct Action Mode.

𝐹𝑜𝑢𝑡

𝐴𝑡

ℎ

LM-900 Level System

We need to find the unknown model parameter(s) using System Identification methods

Can be manually adjusted

The level is
measured

(𝐴𝑡 can be found by measuring the radius of the tank)

- For real system: a handle on the
red tank
- For Simulator: A Numeric control
on the Front Panel (HMI)

ሶℎ =
1

𝐴𝑡
𝐾𝑝(𝑢 − 𝑢0) − 𝐹𝑜𝑢𝑡

𝐴𝑡 ≈ 78.5 𝑐𝑚

Level Tank model – Integrator Model

ሶℎ =
1

𝐴𝑡
𝐾𝑝(𝑢 − 𝑢0) − 𝐹𝑜𝑢𝑡

• 𝐾𝑝 c𝑚3/s)/V is the pump gain

• 𝐹𝑜𝑢𝑡[c𝑚
3/s] is is the outflow through the valve

• 𝐴𝑡 𝑐𝑚2 is the cross-sectional area of the tank
• 𝑢 𝑉 is the control signal to the pump

#1

You should use this model in your
linear Kalman filter algorithm

Level Tank model - 1.order linear system

ሶℎ =
1

𝐴𝑡
𝐾𝑝(𝑢 − 𝑢0) − 𝐾𝑣ℎ

where 𝐾𝑣 is the valve gain on the outflow.

A more accurate model may, e.g., be:

ሶℎ = −
𝐾𝑣
𝐴𝑡

ℎ +
𝐾𝑝
𝐴𝑡

𝑢 (The general term is ሶ𝑥 = 𝑎𝑥 + 𝑏𝑢)

It is more normal to put it like this:

The model above is a so-called Time-constant system (1.order linear system).

#2

Level Tank model - 1.order Nonlinear Model
The following model is even more accurate:

This is a so-called 1.order nonlinear model

#3

• ℎ [𝑐𝑚] is the level
• 𝑢 [𝑉] is the pump control signal to the pump
• 𝑢0 is the bias voltage needed to get any flow (with 𝑢

less than 𝑢0 there is no flow into the tank)
• 𝐴𝑡[𝑐𝑚

2] is the cross-sectional area of the tank
• 𝐾𝑝[(𝑐𝑚3/𝑠)/𝑉] is the pump gain

• 𝐾𝑣 is the valve constant. It depends on the opening of
the valve, but if the opening is constant, 𝐾𝑣 is constant

• 𝜌 is the is the density of the liquid (water: 1 𝑘𝑔/𝑚3)
• 𝑔 is the is the gravity constant, 9.81 m/𝑠2

You may find 𝐾𝑝 and 𝐾𝑣 using,

e.g., the Least Square method

ሶℎ =
1

𝐴𝑡
𝐾𝑝 𝑢 − 𝑢0 − 𝐾𝑣 𝜌𝑔ℎ

“Real Process” → “Black Box Model”
• The Real Level Tank is only available in the

Laboratory
• A “Real” Level Tank will we provided as a “black

box”. Actually, it is just a LabVIEW SubVI where the
Block Diagram and the Process Parameters are
hidden for you.

• Useful for Online Students and when you are
working with the Assignment outside the
Laboratory

“Real Process” → “Black Box Model”

Level
Tank

𝑢 ℎ
Control Signal Level

You can assume that the following model is a
good representation of the Black Box Model:

This means you need to unknown
parameters using some kind of
system identification method

(Provided by the Teacher)

ሶℎ =
1

𝐴𝑡
𝐾𝑝𝑢 − 𝐹𝑜𝑢𝑡

System Identification
In general, System Identification
consists of the following steps:

Make sure to include all
these steps in your solution.

Theory

[Figure: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010]

System Identification
Suggestions: Find the Model Parameters using:

• The Least Square Method

• Then adjust and fine-tune the Model Parameters using
the “Trial and Error” method if necessary

• It is advised that you use at least 2 different methods
for comparison.

• Other relevant methods may be: “Step response
method”, Sub-space methods, DSR, built-in methods in
LabVIEW/MATLAB, etc.

Theory

Data Logging
1. Exite the Real System, e.g.:

2. Log Data to File

3. Use the Logged Data to find the model or the model parameters

Theory

[Figure: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010]

Least Square Example
Given:

We want to find the unknown a and b.
This gives:

i.e.,:

Then we need to discretize:

This gives:

Based on logged data we get:

The we find the uknows a and b using LS:

Theory

Trial & Error Method

Adjust model parameters and then compare the response from the
real system with the simulated model. If they are “equal”, you have
probably found a good model (at least in that working area)

Theory

or “Black-box” Simulator

Created by you in LabVIEW

Model Validation

Make sure to validate that your model works as expected

Example of simple model validation:

Theory

Model Values
If you don't have the red Level Tank nearby, you may use the
following values as a starting point for your simulations in the rest
of the Assignment:

𝐴𝑡 = 78.5 𝑐𝑚

𝐾𝑝 = 16.5 𝑐𝑚3/𝑠

𝐹𝑜𝑢𝑡 should be adjustable from your Front Panel

The range for 𝐹𝑜𝑢𝑡 could, eg., be 0 ≤ 𝐹𝑜𝑢𝑡 ≤ 40𝑐𝑚3/𝑠

Congratulations! - You are finished with the Task

State Estimation
and Kalman Filter

Hans-Petter Halvorsen, M.Sc.

State Estimation in LabVIEW
“LabVIEW Control
Design and Simulation
Module” has built-in
features for State
Estimation, including
different types of
Kalman Filter algorithms

State Estimation with Kalman Filter

• The Kalman Filter is a commonly used method to estimate
the values of state variables of a dynamic system that is
excited by stochastic (random) disturbances and stochastic
(random) measurement noise.

• We will estimate the process variable(s) using a Kalman
Filter.

• You should use one of the built-in Kalman Filter algorithms
in addition to create your own algorithm from scratch.
Compare the results.

State-space Model
For the real system, only the level (h) is measured, so we want to
use a Kalman Filter for estimating the outflow (𝐹𝑜𝑢𝑡) of the tank
(Which we will use in a Feedforward control later).

We need to find a state-space model that we can use in the Kalman Filter.
We need to extend our existing model of the water tank (shown above) with a new state for
𝐹𝑜𝑢𝑡 - We can use the following approach:

Set
𝑥1 = ℎ

And
𝑥2 = 𝐹𝑜𝑢𝑡

Then assume that 𝐹𝑜𝑢𝑡 is constant (which means that ሶ𝐹𝑜𝑢𝑡 = 0)
This mean we can set our system on the following general state-space form:

ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢

ሶℎ =
1

𝐴𝑡
𝐾𝑝𝑢 − 𝐹𝑜𝑢𝑡

𝑥 =
𝑥1
𝑥2

=
ℎ

𝐹𝑜𝑢𝑡

Discrete State-space Model

Next, find the discrete state-space model for the system as well (both pen and paper and
LabVIEW):

Use the Euler forward method:

ሶ𝑥 ≈
𝑥𝑘+1 − 𝑥𝑘

𝑇𝑠

The discrete state-space model can then be used in a Kalman Filter algorithm.

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘
𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘

Tip! Pen and Paper: Use Euler forward
on each of the differential equations.
Then put these discrete equations on a
discrete state-space form

How does the computer find the
discrete State-space model?

Given a continuous State-space model:

ሶ𝑥 = 𝐴𝑐𝑥 + 𝐵𝑐𝑢
𝑦 = 𝐶𝑐𝑥 + 𝐷𝑐𝑢

When using a computer we can use the matrix formula:

𝑥𝑘+1 = 𝐼 + 𝑇𝑠𝐴𝑐
𝐴

𝑥𝑘 +ถ𝑇𝑠𝐵𝑐
𝐵

𝑢𝑘

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘

This equation is derived using the Euler forward method on a general state-space model.

We can easily implement this
equation in LabVIEW/MATLAB
or use built-in c2d functions

Kalman Filter

Start using a simulator (model).
When the simulator is working,
switch to the real process

Theory

Sketch of Kalman Filter in LabVIEW

49

Start using a simulator (model). When the
simulator is working, switch to the real process

Kalman Filter in LabVIEW

50

Start using a simulator (model). When the simulator is working
properly, switch to the real process. You may also add some noise to
your model to make it more realistic.

Note! This is implemented inside a Loop!

LabVIEW Example (Kalman Filter)
This is just a “bad” example – try to create a better application

LabVIEW Example (Kalman Filter)
This is just a “bad” example – try to create a better application

Testing the Kalman Filter
• As with every model-based algorithm you should test your Kalman

Filter with a simulated process before applying it to the real system.

• You can implement a simulator in LabVIEW since you already have a
model (the Kalman Filter is model-based).

• In the testing, you can start with testing the Kalman Filter with the
model in the simulator (without noise).

• Then you can introduce some noise in your simulator.

• You could also introduce some reasonable model errors by making
the simulator model somewhat different from the Kalman Filter
model, and check if the Kalman Filter still produces usable estimates.

Kalman Filter
Algorithm

You may want to use this
algorithm when you are
creating your own Kalman
Filter algorithm in LabVIEW

Theory

Congratulations! - You are finished with the Task

Control System

Hans-Petter Halvorsen

System Overview

PID Control

Hans-Petter Halvorsen, M.Sc.

PID Control

• Control the model (and the real process) using
standard PI(D) control

• Create proper GUI

• It should be possible to easily switch between
the model and the real process

LabVIEW Example (PID + Kalman)
This is just a “bad” example – try to create a better application

Congratulations! - You are finished with the Task

Feedforward Control

Hans-Petter Halvorsen, M.Sc.

Feedforward Control

[Figure: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010]

Feedforward Control
• In this model is Fout a noise signal/disturbance that

we want to remove by using Feedforward.

• We want to design the Feedforward controller so
that Fout is eliminated.

– Solve for the control variable u, and substituting the
process output variable h by its setpoint hsp.

– Fout is not measured, so you need to use the estimated
value instead. Assume that the setpoint is constant.

We will use Feedforward Control in order to improve the control, compared to ordinary Feedback Control.

Feedforward Control
• You should first test it on the simulator then on the real system

afterwards. Start by using the simulator and then extend the program
to make it easy to switch between the real process and the simulator.

• Does the feedforward control improve the level control (compare with
not using feedforward control, but only feedback control)?

• You should make it possible to turn the feedforward controller on/off
from the Front Panel so it is easy to see the difference.

• Without feedforward control the control signal range of the PID
controller is normally [0, 5]. With feedforward the output signal from
the PID controller can be set to have the range [-5, +5], so the
contribution upid from the PID controller can be negative. If upid
cannot be negative, the total signal u=upid+uf may not be small enough
value to give proper control when the outflow is small. The signal to
the DAQ device still needs to be limited to 0-5V as before.

Final Control System with Kalman Filter

• It should be possible to easily switch between
the (1) model and the (2) real process in your
GUI

• It should be possible to easily switch between
(3) Feedback Control and Feedback + (4)
Feedforward Control in your GUI

LabVIEW Example (PID + Kalman + FF)

This is just a bad example – try to create a better application

Congratulations! - You are finished with the Task

Model Predictive Control

Hans-Petter Halvorsen, M.Sc.

Theory

Model Predictive Control (MPC)
• Model predictive control (MPC) is an advanced method of process

control that has been in use in the process industries since the 1980s.
• Model Predictive Control (MPC) is a multivariable control algorithm.
• Model predictive controllers rely on dynamic models of the process,

most often linear empirical models obtained by system identification.
• MPC is based on iterative, finite-horizon optimization of a plant

model.
• This is achieved by optimizing a finite time-horizon, but only

implementing the current timeslot. MPC has the ability to anticipate
future events and can take control actions accordingly.

https://en.wikipedia.org/wiki/Model_predictive_control

https://en.wikipedia.org/wiki/Model_predictive_control

Model Predictive Control (MPC)

[Wikipedia]

Model Predictive Control (MPC)

[Figure: National Instruments, LabVIEW Control Design user Manual, 2008.
Available: http://www.ni.com/pdf/manuals/371057f.pdf]

http://www.ni.com/pdf/manuals/371057f.pdf

When constructing an MPC controller, you must provide
the following information:

• Prediction horizon (𝑁𝑝)—The number of samples in the
future during which the MPC controller predicts the
plant output.

• Control horizon (𝑁𝑐) —The number of samples within
the prediction horizon during which the MPC controller
can affect the control action.

• Note!
𝑁𝑐< 𝑁𝑝

Model Predictive Control (MPC)

𝐽 = ෍

𝑘=0

𝑁𝑝

ො𝑦 − 𝑟 𝑇𝑄 ො𝑦 − 𝑟 +෍

𝑘=0

𝑁𝑐

∆𝑢𝑇𝑅 ∆𝑢

Where:
𝑁𝑝 – Prediction horizon, 𝑁𝑐 – Control horizon

𝑟 – Set-point
ො𝑦 – Predicted process output
∆𝑢 – Predicted change in control value, ∆𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1
𝑄 – Output error weight matrix
𝑅 – Control weight matrix

The cost function often used in MPC is like this (a linear quadratic function):

So the basic problem is to solve:

𝜕𝐽

𝜕𝑢
= 0

[National Instruments, LabVIEW Control Design user Manual, 2008.
Available: http://www.ni.com/pdf/manuals/371057f.pdf]

http://www.ni.com/pdf/manuals/371057f.pdf

PID vs. MPC

• MPC is often used in addition to traditional control like PID
– not as a replacement.

• In large plants MPC is not a replacement for traditional PID,
but used in addition to PID controllers.

• PID controllers are used as single-loop controllers, while
MPC is used as an overall system.

• PID handles only a single input and a single output (SISO
systems), while MPC is a more advanced method of process
control used for MIMO systems (Multiple Inputs, multiple
Outputs).

PID vs. MPC
Traditional Control (PID) MPC

• No knowledge about constraints
• Set-point far from constraints
• Not optimal process operation
• SISO systems
• A mathematical model is not needed

• Constraints included in the design
• Set-point can be closer to constraints
• Improved process operation
• MIMO systems
• A mathematical model is needed

Another advantage of MPC is that cross coupling in multiple input and multiple output (MIMO) systems are taken into consideration in an optimal way. MPC is a simple method for controlling MIMO systems.

MPC in LabVIEW

Hans-Petter Halvorsen

Model Predictive Control

MPC Implementation in LabVIEW

• Implement MPC for the Level Tank System in
LabVIEW using the built-in MPC functionality
in LabVIEW.

• If you prefer, you can instead use the MPC
Toolbox in MATLAB combined with a “MATLAB
Script Node in LabVIEW”

PID vs. MPC

Compare your Control Systems using PID and MPC
respectively:
• Ease of Implementation
• Complexity
• Behavior
• Performance
• Advantages and Disadvantages
• ...

MPC in LabVIEW
In LabVIEW you have the following Predictive Control palette:

MPC Example in LabVIEW
This is just a “bad” example – try to create a better application

MPC - Tips and Tricks

• You can use the given examples as a starting
point or build entirely from scratch.

• You must anyway have understanding, both in
terms of implementation in LabVIEW and basic
principles regarding basic MPC theory.

• Play and Explore: It is important that you ”Add
Value" to your code compared to the given
examples.

Congratulations! - You are finished with the Task

Congratulations! - You are finished with all the Tasks in the Assignment!

Hans-Petter Halvorsen

University of South-Eastern Norway

www.usn.no

E-mail: hans.p.halvorsen@usn.no

Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

